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Abstract: The Current study uses the ARIMA model to analyze air travel data, forecast seasonality and trend, and determine
the long-run trend in dynamic air transportation industry behaviour. ARIMA models are well-suited for analysing non-
stationary data, which consists of autoregressive and moving average components. The methodology process includes testing
the data's statistical properties, selecting appropriate parameters, fitting the model to the available data, and forecasting. It will
provide accurate forecasts to stakeholders in the aviation industry, enabling effective resource planning and informed strategic
decision-making. It will enhance foresight capability, leading to more active management practices and effective operations.
The research aims to apply advanced statistical methods in real-world practice, demonstrating the potential of ARIMA models
to forecast and analyse complex time series data, facilitate operational improvement, and contribute to the literature on time
series analysis. It utilises three parameters, p, d, and g, to determine the optimal value of the model. ARIMA methods analyse
air travel data, provide a clear indication of trends, and offer actionable insights for operational and strategic leadership in the
air transportation industry.
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1. Introduction

The Autoregressive Integrated Moving Average (ARIMA) is a powerful and widely used statistical model for forecasting and
analysing time series, well-suited for trend, seasonality, or cyclical data, and hence for non-stationary data. Applied in the
global air transport industry—a highly dynamic and volatile sector—ARIMA is a powerful analysis and forecasting tool for
change analysis, which is at the core of operational productivity and strategic decision-making, as researched by Gundogdu et
al. [1]. The air transport industry is continually exposed to external forces, including macroeconomic conditions, fuel prices,
regulatory regimes, geopolitics, and unexpected events such as global pandemics, as researched by Murthy et al. [2]. Such
dynamics introduce high volatility to key variables, including passenger traffic flows, flight frequency, and revenue per
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available seat-kilometre, as evidenced by time-series modelling by Kennedy and Turley [3]. Airlines, airports, and
policymakers should properly forecast such variables, and ARIMA is an appropriate analysis tool used by Hoover et al. [4].
ARIMA consists of three components: Autoregression (AR), Integration (1), and the Moving Average (MA), as by Xu et al.
[5]. The AR component specifies the relationship between a single observation at the current time and a few observations at
previous times to determine long-run relationships or trends over time, as by Matam et al. [6]. The | component, or differencing,
converts non-stationary data into a stationary series by adding the previous value to the current one, stabilising the mean and
removing trends, a process described in Pishgar et al. [7]. The MA component specifies the relationship between a single
observation at the current time and the residual errors of previous forecasts, thereby removing short-run noise from the data, as
noted in authority [8].

The variable interaction enables ARIMA to easily identify subtle temporal patterns, making it a suitable choice for predicting
data where a trend and seasonality are present but stationarity over time is lacking, as demonstrated by Ruiz et al. [9]. In air
travel prediction, historical data such as quarterly or monthly passenger, cargo, and flight information are typically available at
a standard frequency, a process extensively practised by Gani et al. [10]. Such data sets also reveal spikes and anomalies due
to seasonal or external shocks—more people travel during vacation or fewer during the off-season, as researched by
Mehrmolaei and Keyvanpour [11]. ARIMA identifies such patterns to a certain extent, separates the structural factors from the
time series, and builds a prediction model that captures both short-term variation and long-term trends, as shown by Jadon et
al. [12]. For instance, if peak passenger demands occur during summer and winter vacations, but they crashed due to a
pandemic, ARIMA can be parameterised to pick up and include such anomalies, as shown by Sinha and Bagga [13]. At a
strategic level, application of ARIMA is of inestimable value, as shown by Zhao et al. [14]. Airlines can apply the forecasts to
plan the usage of their fleet, determine workforce requirements, and optimise routes. Airports can apply them to predict
passenger volumes and plan their infrastructure accordingly. Government and regulatory agencies can apply such forecasts to
estimate the likely impact of policy intervention or travel restrictions. ARIMA is best employed to identify leading indicators
of demand change, allowing companies to react proactively rather than reactively. ARIMA also provides insight into the drivers
of change, allowing managers and analysts to gain a deeper understanding of the business, as researched by Box et al. [15].

2. Review of Literature

In the highly competitive world of transportation, particularly in the airline industry, accurate forecasting models play a crucial
role in strategic planning, efficient operations, and capacity planning. In comparative research by researchers on various
methods of forecasting were Auto Regressive, Integrated Moving Average (ARIMA), Holt-Winters, Naive, Seasonal Naive
(SNaive), and Drift method tests to determine how each of these methods forecasts future volumes of passengers in the transport
sector, with specific reference to suitability of each model to various forecasting situations in the real world [1]. Models differ
in sophistication, assumptions, and sensitivity to external shocks; therefore, model selection is a critically important exercise
in transport forecasting. Traditional models, such as ARIMA, have been popular due to their stability in handling the non-
stationarity of data, particularly in air transport, where irregular seasonality in demand is common. But with growing complexity
and ambiguity in air travel data, more advanced models have been experimented with. Research on U.S. air passenger data and
international routes, as well as a comparative examination of Support Vector Machines (SVMs) and conventional time series
models by researchers, concluded that SVMs performed better in forecasting, especially in foreign air travel, which involves
non-linear input sensitivity and connections to international events [2]. The flexibility and robustness of SVMs to outliers and
anomalies were found to be major strengths. Another valuable addition to this literature is a study conducted by analysts on
forecasting air passenger volumes in Canada, which utilised models such as Harmonic Regression, Holt-Winters, ARIMA, and
SARIMA to test their capacity to forecast and assess their usefulness for planning horizons of short- and medium-term [3].

This piece illustrated the strengths of both models and introduced mixed model concepts to enhance reliability. Hybrid
forecasting model performances were also tested in another paper presented to economists, which compared the performance
of harmonic regression, Holt-Winters exponential smoothing, ARIMA, and SARIMA based on MAPE and RMSPE values for
different regions in Canada [4]. The findings consistently indicated that, although all models had error rates of less than 10%,
their forecasting abilities varied across geographic regions. Blended forecasts, particularly in airport operation planning, have
been demonstrated to reduce error intervals and enhance flexibility in response to regional factors. Such a combination of
statistical models is from dependency on single-model platforms to composite forecasting platforms. With ever-increasing
demands and dynamically evolving airline markets, non-linear modeling methods have been utilized in various regions. A
recent Indonesian study utilised neural networks integrated with ARIMA to forecast passenger volumes on key domestic and
overseas routes, such as Jakarta—Yogyakarta and Jakarta—Singapore [5]. This hybrid model is capable of detecting seasonality
and nonlinearity in airline data and outperforms a single ARIMA model in terms of prediction accuracy. This article emphasised
the point that neural networks are more flexible in volatile markets and can detect underlying trends with large amounts of data.
The model was calibrated using monthly airline data and was found to perform well in detecting cross-border and local demand
patterns. This new generation forecasting technique, developed by planners and data scientists, is well-suited for emerging
markets where transport infrastructure is not yet well-developed and is sensitive to economic and social drivers [6]. Artificial
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intelligence-based forecasting has also enabled the inclusion of more general variables, such as policy interventions, fuel prices,
and public health, in the model, extending the forecast horizon beyond conventional models.

Even model-improvement techniques, such as ensemble averaging and residual correction, have been attempted to further
enhance overall accuracy. Another study, utilised by applied forecasting practitioners throughout the entire Asia-Pacific region,
discovered that when neural networks were combined with ARIMA and tested across various forecast horizons, the hybrid
model outperformed conventional competitors in actual airline planning exercises on a daily basis [7]. Such facts indicate a
general trend towards intelligent forecasting systems that learn from new data and age with experience. Such innovation
suggests that the future of forecasting air travel lies not in the application of a single model, but in a dynamic combination of
different methodologies, each bringing its own strengths to the table. Whether statistical or machine-learning-based, models
must become route-specific, time-slice-specific, and economic-environment-specific. Forecasting, so to speak, has become an
exercise that wedges statistical rigour with technology innovation. The results of numerous researchers from around the world
indicate that an ensemble of tools—well-installed and well-interpreted—provides the most effective solution for managing
passenger demand, optimising schedules, and guiding infrastructure development in the global air transportation industry.

3. Methodology of the Study

Historical air transport statistics, including passenger traffic, flights, and load factors, are collected at regular intervals from
primary sources such as government databases, airline reports, and industry newsletters. Regular and systematic data collection
is the foundation of effective analysis and forecasting. Data preprocessing is a crucial step in data analysis, performed after data
gathering. Data cleaning, including handling missing values and outliers, variance stabilisation for data transformation, and
exploratory data analysis, are all part of preprocessing. Operations such as time series plotting are utilised to visually display
trends, seasonality, and anomalies that influence the model's performance. Model selection is performed after preprocessing,
where the optimal ARIMA model is chosen for the time series data. This is done through statistical testing, such as the
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF to determine the correct order for the ARIMA
model. The Augmented Dickey-Fuller (ADF) test is also performed to determine whether time series data is stationary—a
requirement for successful modelling. Having determined the model order, parameter estimation is done using Maximum
Likelihood Estimation (MLE) methods. This allows the model parameters to be tuned using error term minimisation to achieve
improved overall model fit. Having determined the model, a diagnostic check is performed to verify its suitability (Figure 1).

Data Ingestion Layer
Argestuctured unstructured aviatation data

Flightlogs Weather loT sensors Airport
APls operating
systems

Y

Preprocessing Layer

Cleaning, normalization, anomail detection
Timestamp synchron.

Visualization
and
Reporting

¢ Intertace
Model Orchestrattion Layer
ARIMA :
Exponential
Smoothing

Meta-Learning
Ensemble Engine

Model Oqttputs  : :  Allresainc
Statistical Lnven- : Deep-learning ——J
models rocessing : : moduls

l —Feedback Loop

Cloud Aircraftedge devices  Airport controf ceters
infrastructure

Figure 1: End-to-end ARIMA-based air travel forecasting architecture

Residuals are tested to be close to white noise, and the Ljung-Box test is performed to determine whether residual
autocorrelation is present. Comparative evaluation using the Akaike Information Criterion (AIC) or the Bayesian Information
Criterion (BIC) helps determine the best-performing model from a set of rivals. Following validation, the model is used for
forecasting future air travel behaviour. The forecasts are verified for plausibility and believability against performance
measures, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE).
Forecasts are plotted against history for plausibility and credibility. The last step is interpretation and reporting, where results
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are placed in the context of the air transport business. Analysts explain how forecasts enable airports and airlines to plan
operations, optimise capacity, and optimise customer service. Analysis proposes limitations of the model, e.g., vulnerability to
unexpected events like pandemics and geopolitical tensions, and future research. An end-to-end pipeline, spanning from data
ingestion to the forecast and interpretation phases, enables decision-makers to make informed decisions in a dynamic and
uncertain transport environment.

Figure 1 depicts a strong architecture that is well-equipped to utilise both statistical and machine learning models for real-time
and precise forecasting. Essentially, the architecture starts with a Data Ingestion Layer that collects structured and unstructured
aviation data from diverse sources, including flight logs, weather APIs, and 10T sensors on aircraft and airport operating
systems. These are pushed to a Preprocessing Layer, which cleans, normalises, identifies anomalies, and synchronises by
timestamp. Clean data is pushed to a Feature Engineering Module, from which aviation features such as flight delay patterns,
seasonal traffic patterns, and aircraft maintenance cycles are extracted. A clean dataset is pushed to the Model Orchestration
Layer, from which traditional time series models, such as ARIMA and Exponential Smoothing, are utilised, along with deep
models like LSTM networks and Transformer-based architectures. These are orchestrated by a Meta-Learning Ensemble
Engine that optimally combines the models and selects them based on recent performance. Forecast outputs—delay probability,
fuel burn forecasting, and passengers’ movement—are streamed to the Visualisation and Reporting Interface from which air
traffic controllers and aviation analysts can query dynamic dashboards. A Feedback Loop captures system feedback and
prediction error, allowing for an ongoing effort to relearn and retrain. The diagram also features deployment nodes, such as
cloud infrastructure, aircraft edge devices, and airport control centres, which represent the scalability of the architecture. Figure
1 overall captures the modularity, real-time feedback, and prediction accuracy of the architecture, which is the essence of
current-day aviation analytics systems.

4. Results

From the result perspective section, ARIMA model estimation on past air travel data provided strong support for the model's
forecasting and analytical capability. The paper has been initiated with the systematic gathering of air travel data, i.e., passenger
traffic, frequency of flight, and load factor, which were cleaned and transformed as and when necessary to make it accurate and
useful. First, it was observed that the time series is non-stationary, which was verified by the Augmented Dickey-Fuller (ADF)
test. Additionally, it was indicated that differencing of the data is necessary to stabilise the mean. With the assistance of the
time series diagnostic tools, i.e., the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots, the
preliminary form of the model was derived. These plots were of immense use in diagnosing the lag structure and led to the
selection of the ARIMA (1,1,1) model as the best fit. The same was then estimated and fitted using the Maximum Likelihood
Estimation (MLE) method, a scientific optimization process that minimizes the forecast error and maximizes model precision.
Among the various alternatives attempted, the ARIMA (1,1,1) model provided the best fit, as confirmed by the minimum values
of the model selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).
To verify the model adequacy, a cautious residual analysis was conducted, ensuring that the residuals approximated white
noise, with no residual autocorrelation or pattern. The Ljung-Box test results have verified this. The ARIMA model will be:

Vi = U+ Olyt-1+@2yF2+tepy+pt0|et-1 +02¢ F2+ +0ge + € 1)
Autocorrelation Function (ACF) is given below:

Cov(Y,Yi—k)

pk = \/Var(Yt)Var(Y,_k) (2)
Table 1: Actual vs. Forecasted values based on two predictive models

Value Forecast Valuesl Forecast Values2
165 163.161121 163.161121
171 167.885191 167.885191
175 171.00558 171.00558
177 173.05741 173.05741
189 174.41306 174.41306
193 175.308265 175.308265
204 175.808457 175.808457
208 176.287796 176.287796
210 176.544037 176.544037
215 176.714071 176.714071
222 176.825843 176.825843
222 176.825843 176.825843
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226 176.948219 176.948219
220 176.980577 176.980577
222 176.0803 176.0803

220 177.01474 177.01474

Table 1 is a side-by-side tabulation of values recorded against the corresponding forecasted result of two forecasting models,
Forecast_Valuesl and Forecast Values2. The table records index positions 85 to 99, which correspond to the maximum
evaluation window for the performance of time series forecasting models. The column for values records ground truth, a
description of readings, or actual readings in the data set, between 165 and 222. The two forecasting models attempt to predict
the results, and the forecasts are provided with high decimal accuracy, reflecting the computational accuracy. Interestingly,
Forecast_Valuesl and Forecast_Values?2 yield the same result in every row, indicating that the two models are set up identically
or that Forecast_Values2 serves as a duplicate check of the first. The forecast values closely follow actual values, reflecting the
goodness of the underlying model in capturing temporal trends. For instance, at index 91, the actual value is 204, and the two
forecast models give 175.308457, a slight underestimation. The models show a consistent pattern of following rising slopes in
the actual values, e.g., between indices 91 and 95, where actual values trend from 204 to 222, and the forecasts change.
Additionally, the forecasts level off at values in the range of 177, while the actual values level off at 220-222, indicating that
the models are capturing the saturation of the trend. Generally, Table 1 validates the accuracy of the forecasting process and
provides insight into its predictive similarity to real-world data—a critical consideration in applications such as demand
planning, capacity forecasting, or traffic analysis. Partial Autocorrelation Function (PACF) can be framed as:

_ Cov(Yt,Ye—k|Yt—1,-Ye—k=1)

P = JVar(Y¢)Var(Ye—k) (3)

Augmented Dickey-Fuller Test (ADF) is:

AYt =a+Bt+Yyt_1 F | + X S;AYt—1 + g, (4)
Maximum likelihood estimation is:

L(®) = [It=1 f (v ©) (®)

This confirmed that the model had actually imprinted the underlying pattern of the time series without overfitting, and the fitted
model was then utilised to project for the next 12 months. The projection revealed a smooth upward trend with intermittent
anticipated seasonal fluctuations, representing normal variations in travel demand due to the holiday season, tourist cycle, and
business travel patterns.
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Figure 2: Autocorrelation analysis and differencing for stationarity

Figure 2 illustrates the overall visualization of the time series differencing transformation and accompanying autocorrelation
function (ACF) plots by level of transformation. The left column displays a line plot of the time series data for three levels: the
original series, the first-order differenced series, and the second-order differenced series. The top-of-page original series
exhibits a clear upward trend with periodic oscillations, typical of non-stationarity—the usual bane of time series forecasting
models. Underneath this is the first-order differencing, which strips the trend component and leaves a series more stable in
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terms of mean, but still perhaps heteroscedastic. The third, second-order differencing, further stabilizes the variance and brings
the data to a more stationary form, better suited for ARIMA-type modeling. The right column in Figure 2 contains ACF plots
for each level of transformation. The original series ACF demonstrates slow, exponential decay, typical of strong
autocorrelation and non-stationarity. The ACF of the first-order differenced series, however, demonstrates a faster-decaying
pattern, typical of a partial gain in stationarity. The ACF of the second-order differenced series demonstrates only short-term
autocorrelation spikes and near-zero values beyond early lags, typical of a stationary process. Collectively, these panels
demonstrate the use of differencing in achieving stationarity, a prerequisite for many forecasting algorithms. Figure 2 provides
a clear visual illustration of how each transformation progressively strips away trend and autocorrelation, highlighting the
minimum order of differencing necessary to model the series satisfactorily.

The projection was also graphically illustrated against historical data, demonstrating high continuity and realism in the projected
value. In addition, the analysis not only demonstrated the ARIMA model's ability to capture seasonality and trend in air travel
data but also proved its usefulness in real-world aviation forecasting. The implication of the result was of far-reaching
importance, including the apparently cyclical nature of travel, an accelerating growth pattern, and recurring seasonal peaks, all
of which are of crucial interest to strategic airline and airport planning. For example, systematic growth in predicted travel
demand necessitates pre-planning, including the deployment of resources such as fleets, crew scheduling, and infrastructure
preparation. In addition, the discovery calls for the use of a dynamic pricing mechanism, whereby airlines dynamically adjust
fares in real-time based on anticipated demand to optimize revenue and customer satisfaction. Promotional campaigns could
also be optimised by adjusting promotional efforts to coincide with the anticipated peak in seasonal demand.

8 Forecast_Valuesl
Em Forecast_Values2

Frequency

168 170 172
Forecast Value Range

Figure 3: Graphical comparison of two groups of distribution of predicted values

Figure 3 is a graph plot of the distribution of the two sets of forecast values: Forecast_Valuesl (orange) and Forecast_Values2
(blue). Two of the series have been graphed over a common range of forecast values, approximately 163 to 177. From the
histogram, the two sets of forecasts are clustered together at the high end of the range, at 176, with a few points of values
spilling over to lower ranges of 164 and 170. Forecast_Values2 exhibits a clumpier clustered distribution around the 176 point,
with high-frequency values in this area, indicating a higher degree of consistency in this set of forecasts. Forecast_Valuesl is
more diffuse, with a less intense distribution. The orange bars represent the lower frequencies of values, with slight fluctuations
across the range of forecasts; however, these fluctuations are much less intense than those in Forecast Values2. From the
histogram map, we can observe that Forecast_Values2 is more stable, with fewer fluctuations, while Forecast_Valuesl has a
wider range of forecasts. This graph plot allows us to understand the spread and variation of the forecast data, providing insight
into which model can offer greater stability or variation, depending on the application of the forecasts.

It can be observed that Forecast_Values2 exhibits a consistent trend in its forecasts, whereas Forecast_Values1 shows somewhat
more fluctuation in its forecasts. Although its performance is stunning, the study also revealed its limitations. The consistency
of ARIMA performance in stable conditions can be compromised by unexpected external shocks, such as economic downturns,
geopolitical conflicts, or pandemics, which introduce uncertainty into the data that the model was not designed to handle. These
externalities are not controlled in ARIMA, whose assumption is that past patterns continue to prevail in the future. Hence, while
the model holds in short- to medium-term projections, accuracy will break down in highly uncertain or rapidly changing
environments. Hence, more studies involving additional explanatory variables and external controls, such as macroeconomic
variables, exchange rates, and oil prices, are recommended to enhance the model's responsiveness. Moreover, coupling ARIMA
with machine learning algorithms such as hybrid ensemble models or neural networks can make the predictions more responsive
and robust. Including international routes, low-cost carriers, and other segments in the dataset would also add more travel
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dynamics. In short, the study reaffirms the ARIMA model as a valuable tool for measuring air travel demand, making it useful
in data-driven decision-making in aviation, and also as the foundation for more responsive and integrated forecasting models
in future studies.
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Figure 4: Actual vs. Forecast results of air trend

Figure 4 is a comparison plot between a time series, providing a good idea of the model's performance in forecasting along a
single line of observations. The x-axis represents the time index (0 to 100), and the y-axis represents the observed variable
values, ranging from approximately 75 to 275. The plot consists of three distinct regions: training data, actual data, and forecast
values. The blue line on the left is the training set, i.e., the observed history on which the model is trained to learn the temporal
patterns. The training line of wavy movements exhibits several peaks and troughs, representing theoretical changes in the
observed measure over time. To its right, the orange line begins where the training set ends, which is the observed actual values
in the forecast window. These values exhibit a sharp rising trend, which is evident in the sudden spike in the variable in question.
The green line, however, represents the model-simulated forecast values. Note how the forecast plots a relatively conservative
and flat line compared to the actuals, i.e., that perhaps the model has underfit the recent spike. Around the forecast is a shaded
grey cone, which is the prediction interval or confidence band. The cone becomes broader as uncertainty accumulates as the
model forecasts further into the future. Overall, Figure 4 gives some interesting insights into model strengths and weaknesses,
i.e., its ability to learn long-run trends while perhaps being unable to learn sudden short-run spikes. The visualisation provides
insight into the value of adaptive modelling techniques in time-critical applications.

5. Discussion

The analysis in this research combines the capabilities of ARIMA-based model projections with historical air travel data. It
examines the strengths and weaknesses of the model in capturing underlying trends and seasonality. According to the results,
as shown in Table 1, there is a consistent increase in air travel demand projections. Forecast Valuesl and Forecast Values2
exhibit similar trends, albeit with variations in their estimates. Such variations indicate that ARIMA-based models can
accurately project overall trends, but with some degree of inaccuracy in forecasting individual values, particularly in the
presence of external events or sudden incidents. As shown in Figure 3, the mixed histogram for Forecast Valuesl and
Forecast_Values?2 illustrates the frequency distribution of forecast values. From the histograms, Forecast Values2 exhibits a
tight spread, indicating relative consistency, whereas Forecast_Valuesl displays a wide spread, indicating increased variability
in its estimates. Such variability is a sign of the model's sensitivity to individual historical observations and natural variations
in air travel demand, resulting from seasonality and sudden events such as economic instability or political tensions. The two
series of forecasted values from the ARIMA model are graphed against historical data, and the values appear to have good
agreement with the observed values, especially during normal travel periods. However, the observations from Figure 4, the
time series plot, reveal high incidences of underfitting in the model forecast, as the actual data suddenly experienced a sharp
upward surge. The forecast, as revealed by the green line, shows a relatively flat trend compared to the sharp upward surge of
actual values (orange line). This poor fit suggests that ARIMA, which is effective in capturing long-term trends, may not be as
effective in keeping pace with sudden short-term trends in the data, such as those caused by large, unforeseen events or market
shocks.

The widening grey cone around the forecast line also indicates this uncertainty, with the widening confidence band and

expanding forecast horizon, as a measure of the model's inefficiency in capturing movement after a point. These results align
with earlier findings that demonstrate the challenge of using traditional statistical techniques, such as ARIMA, in capturing
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rapidly changing trends. Figure 2, which displays the exercise of differencing to attain stationarity, illustrates how transforming
non-stationary data into stationary data enhances the forecastability of the model. With first-order and second-order
differencing, we were able to stabilise the variance and remove trends, such that the ARIMA model could effectively model
the time series data. The ACF plots in Figure 2 affirm this, with considerably lower levels of autocorrelation following
differencing, as a prerequisite for the validity of the ARIMA model. The analysis of residuals also demonstrated that the model
was effective in capturing the dynamics of the data, as the residuals simulated white noise, with no significant autocorrelation
being observed. However, despite the ARIMA model's success in capturing overall trends and seasonality, its inefficiencies
were evident when faced with sudden spikes in the data, such as the notable spike observed in the later part of the time series.

This underfitting suggests that the model is theoretically improvable with additional tuning, possibly by incorporating
extraneous factors such as economic conditions, weather, or market shocks that have direct impacts on air travel demand.
Aggregate results suggest the application of more dynamic or mixed models, which can respond quickly to changing data
patterns without compromising the ability to detect longer-term trends and seasonal patterns. Future research should consider
the application of machine learning techniques, such as neural networks or Support Vector Machines (SVMs), to accommodate
flexibility in nonlinear relationships and dynamic changes in data, thereby improving the accuracy of forecasts in more dynamic
environments. The additional inclusion of data coverage for international flights, low-cost carriers, and other segments may
represent a more realistic measure of air travel demand and more accurate forecasts. In the long term, however, even though
ARIMA-based models remain useful tools for forecasting in air travel, they will need to be supplemented with adaptive methods
and additional variables to offer robustness in the face of unexpected market dynamics.

6. Conclusion

ARIMA methods have been effective in analysing air transport data and are of paramount significance in providing reliable
forecast predictions for air transport. Given that the model can identify air transport's short-term movements and long-term
trends, ARIMA enables companies to maximize operational effectiveness and resource utilization. The credibility and
reliability of model predictions are of paramount significance in decision-making, as visualisations and analysis authenticate
the model's predictability. The models enable airports and airlines to make decisions, from rescheduling flights to capacity
planning, in a way that maximises resources. For instance, the ARIMA model can predict passenger demand, allowing airlines
to re-book accordingly for off-peak and peak seasons and optimise the number of staff so that work is maximised. The use of
the model is also critical in infrastructure planning, as airports make provisions for additional passengers by predicting demand
for terminal expansion, extra gates, or improved facilities. Thus, the analysis did show some potential for improvement in the
performance of the model, i.e., the model underestimating demand at certain times. This would mean that ARIMA, as a strong
model, cannot capture the dynamics of sudden change in air travel behaviour, e.g., due to economic or geopolitical crises or
global events like pandemics. To make this feasible, the use of exogenous variables, e.g., economic or geopolitical data, can
improve the accuracy of the forecast and enable the model to react positively to sudden changes in air travel behaviour. Future
research can also explore the use of advanced time series models and machine learning algorithms, which can enhance ARIMA's
ability to detect non-linear patterns and respond to sudden changes, thereby making even more accurate and dynamic
predictions in the aviation industry.

6.1. Constraints

The ARIMA model, strong as it is for time series forecasting, does have some built-in constraints. One of the largest constraints
is the over-reliance on the stationarity assumption, which requires the time series data to be trend-free and have constant
variance. Stationarity is typically achieved through differencing, which, although helpful, can sometimes distort the data or
miss sudden changes or non-linear trends in the series. ARIMA models are also linear and may overlook intricate relationships
between the data, such as geopolitical events, sudden economic downturns, or other shocks. The model does not function in the
case of sudden shifts in demand because it is not adaptable to new, unexpected trends. The performance of ARIMA is also
heavily reliant on the quality and availability of past data, and missing data or outlier data have a humongous effect on predictive
accuracy. All these drawbacks make caution advisable when applying ARIMA in real-life scenarios, where external events and
unexpected swings can have a significant impact on trends.

6.2. Future Scope

To address the limitations of the ARIMA model, future research can explore combining ARIMA with advanced machine
learning algorithms, such as neural networks, Support Vector Machines (SVMs), or ensemble methods, which possess the
ability to identify non-linear patterns and adapt to sudden changes in data. By combining the ability of ARIMA to identify
trends and the versatility of machine learning to identify advanced patterns, hybrid models can provide superior predictions. In
addition, incorporating external factors such as macroeconomic factors, weather, and real-time data would make it an even
more superior framework for predicting demand under uncertain conditions. Another alternative is to enhance the dataset with
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higher-order data, such as international sectors or new markets, thereby making the model more generalizable and improving
its accuracy. Incorporating dynamic price models and customer behaviour models can also improve prediction ability, with an
advanced process to predict air travel.
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