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Abstract: The Current study uses the ARIMA model to analyze air travel data, forecast seasonality and trend, and determine 

the long-run trend in dynamic air transportation industry behaviour. ARIMA models are well-suited for analysing non-

stationary data, which consists of autoregressive and moving average components. The methodology process includes testing 

the data's statistical properties, selecting appropriate parameters, fitting the model to the available data, and forecasting. It will 

provide accurate forecasts to stakeholders in the aviation industry, enabling effective resource planning and informed strategic 

decision-making. It will enhance foresight capability, leading to more active management practices and effective operations. 

The research aims to apply advanced statistical methods in real-world practice, demonstrating the potential of ARIMA models 

to forecast and analyse complex time series data, facilitate operational improvement, and contribute to the literature on time 

series analysis. It utilises three parameters, p, d, and q, to determine the optimal value of the model. ARIMA methods analyse 

air travel data, provide a clear indication of trends, and offer actionable insights for operational and strategic leadership in the 

air transportation industry. 
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1. Introduction 

 

The Autoregressive Integrated Moving Average (ARIMA) is a powerful and widely used statistical model for forecasting and 

analysing time series, well-suited for trend, seasonality, or cyclical data, and hence for non-stationary data. Applied in the 

global air transport industry—a highly dynamic and volatile sector—ARIMA is a powerful analysis and forecasting tool for 

change analysis, which is at the core of operational productivity and strategic decision-making, as researched by Gundogdu et 

al. [1]. The air transport industry is continually exposed to external forces, including macroeconomic conditions, fuel prices, 

regulatory regimes, geopolitics, and unexpected events such as global pandemics, as researched by Murthy et al. [2]. Such 

dynamics introduce high volatility to key variables, including passenger traffic flows, flight frequency, and revenue per 
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available seat-kilometre, as evidenced by time-series modelling by Kennedy and Turley [3]. Airlines, airports, and 

policymakers should properly forecast such variables, and ARIMA is an appropriate analysis tool used by Hoover et al. [4]. 

ARIMA consists of three components: Autoregression (AR), Integration (I), and the Moving Average (MA), as by Xu et al. 

[5]. The AR component specifies the relationship between a single observation at the current time and a few observations at 

previous times to determine long-run relationships or trends over time, as by Matam et al. [6]. The I component, or differencing, 

converts non-stationary data into a stationary series by adding the previous value to the current one, stabilising the mean and 

removing trends, a process described in Pishgar et al. [7]. The MA component specifies the relationship between a single 

observation at the current time and the residual errors of previous forecasts, thereby removing short-run noise from the data, as 

noted in authority [8]. 

 

The variable interaction enables ARIMA to easily identify subtle temporal patterns, making it a suitable choice for predicting 

data where a trend and seasonality are present but stationarity over time is lacking, as demonstrated by Ruiz et al. [9]. In air 

travel prediction, historical data such as quarterly or monthly passenger, cargo, and flight information are typically available at 

a standard frequency, a process extensively practised by Gani et al. [10]. Such data sets also reveal spikes and anomalies due 

to seasonal or external shocks—more people travel during vacation or fewer during the off-season, as researched by 

Mehrmolaei and Keyvanpour [11]. ARIMA identifies such patterns to a certain extent, separates the structural factors from the 

time series, and builds a prediction model that captures both short-term variation and long-term trends, as shown by Jadon et 

al. [12]. For instance, if peak passenger demands occur during summer and winter vacations, but they crashed due to a 

pandemic, ARIMA can be parameterised to pick up and include such anomalies, as shown by Sinha and Bagga [13]. At a 

strategic level, application of ARIMA is of inestimable value, as shown by Zhao et al. [14]. Airlines can apply the forecasts to 

plan the usage of their fleet, determine workforce requirements, and optimise routes. Airports can apply them to predict 

passenger volumes and plan their infrastructure accordingly. Government and regulatory agencies can apply such forecasts to 

estimate the likely impact of policy intervention or travel restrictions. ARIMA is best employed to identify leading indicators 

of demand change, allowing companies to react proactively rather than reactively. ARIMA also provides insight into the drivers 

of change, allowing managers and analysts to gain a deeper understanding of the business, as researched by Box et al. [15].  

 

2. Review of Literature  

 

In the highly competitive world of transportation, particularly in the airline industry, accurate forecasting models play a crucial 

role in strategic planning, efficient operations, and capacity planning. In comparative research by researchers on various 

methods of forecasting were Auto Regressive, Integrated Moving Average (ARIMA), Holt-Winters, Naïve, Seasonal Naïve 

(SNaïve), and Drift method tests to determine how each of these methods forecasts future volumes of passengers in the transport 

sector, with specific reference to suitability of each model to various forecasting situations in the real world [1]. Models differ 

in sophistication, assumptions, and sensitivity to external shocks; therefore, model selection is a critically important exercise 

in transport forecasting. Traditional models, such as ARIMA, have been popular due to their stability in handling the non-

stationarity of data, particularly in air transport, where irregular seasonality in demand is common. But with growing complexity 

and ambiguity in air travel data, more advanced models have been experimented with. Research on U.S. air passenger data and 

international routes, as well as a comparative examination of Support Vector Machines (SVMs) and conventional time series 

models by researchers, concluded that SVMs performed better in forecasting, especially in foreign air travel, which involves 

non-linear input sensitivity and connections to international events [2]. The flexibility and robustness of SVMs to outliers and 

anomalies were found to be major strengths. Another valuable addition to this literature is a study conducted by analysts on 

forecasting air passenger volumes in Canada, which utilised models such as Harmonic Regression, Holt-Winters, ARIMA, and 

SARIMA to test their capacity to forecast and assess their usefulness for planning horizons of short- and medium-term [3].  

 

This piece illustrated the strengths of both models and introduced mixed model concepts to enhance reliability. Hybrid 

forecasting model performances were also tested in another paper presented to economists, which compared the performance 

of harmonic regression, Holt-Winters exponential smoothing, ARIMA, and SARIMA based on MAPE and RMSPE values for 

different regions in Canada [4]. The findings consistently indicated that, although all models had error rates of less than 10%, 

their forecasting abilities varied across geographic regions. Blended forecasts, particularly in airport operation planning, have 

been demonstrated to reduce error intervals and enhance flexibility in response to regional factors. Such a combination of 

statistical models is from dependency on single-model platforms to composite forecasting platforms. With ever-increasing 

demands and dynamically evolving airline markets, non-linear modeling methods have been utilized in various regions. A 

recent Indonesian study utilised neural networks integrated with ARIMA to forecast passenger volumes on key domestic and 

overseas routes, such as Jakarta–Yogyakarta and Jakarta–Singapore [5]. This hybrid model is capable of detecting seasonality 

and nonlinearity in airline data and outperforms a single ARIMA model in terms of prediction accuracy. This article emphasised 

the point that neural networks are more flexible in volatile markets and can detect underlying trends with large amounts of data. 

The model was calibrated using monthly airline data and was found to perform well in detecting cross-border and local demand 

patterns. This new generation forecasting technique, developed by planners and data scientists, is well-suited for emerging 

markets where transport infrastructure is not yet well-developed and is sensitive to economic and social drivers [6]. Artificial 
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intelligence-based forecasting has also enabled the inclusion of more general variables, such as policy interventions, fuel prices, 

and public health, in the model, extending the forecast horizon beyond conventional models.  

 

Even model-improvement techniques, such as ensemble averaging and residual correction, have been attempted to further 

enhance overall accuracy. Another study, utilised by applied forecasting practitioners throughout the entire Asia-Pacific region, 

discovered that when neural networks were combined with ARIMA and tested across various forecast horizons, the hybrid 

model outperformed conventional competitors in actual airline planning exercises on a daily basis [7]. Such facts indicate a 

general trend towards intelligent forecasting systems that learn from new data and age with experience. Such innovation 

suggests that the future of forecasting air travel lies not in the application of a single model, but in a dynamic combination of 

different methodologies, each bringing its own strengths to the table. Whether statistical or machine-learning-based, models 

must become route-specific, time-slice-specific, and economic-environment-specific. Forecasting, so to speak, has become an 

exercise that wedges statistical rigour with technology innovation. The results of numerous researchers from around the world 

indicate that an ensemble of tools—well-installed and well-interpreted—provides the most effective solution for managing 

passenger demand, optimising schedules, and guiding infrastructure development in the global air transportation industry. 

 

3. Methodology of the Study 

 

Historical air transport statistics, including passenger traffic, flights, and load factors, are collected at regular intervals from 

primary sources such as government databases, airline reports, and industry newsletters. Regular and systematic data collection 

is the foundation of effective analysis and forecasting. Data preprocessing is a crucial step in data analysis, performed after data 

gathering. Data cleaning, including handling missing values and outliers, variance stabilisation for data transformation, and 

exploratory data analysis, are all part of preprocessing. Operations such as time series plotting are utilised to visually display 

trends, seasonality, and anomalies that influence the model's performance. Model selection is performed after preprocessing, 

where the optimal ARIMA model is chosen for the time series data. This is done through statistical testing, such as the 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF to determine the correct order for the ARIMA 

model. The Augmented Dickey-Fuller (ADF) test is also performed to determine whether time series data is stationary—a 

requirement for successful modelling. Having determined the model order, parameter estimation is done using Maximum 

Likelihood Estimation (MLE) methods. This allows the model parameters to be tuned using error term minimisation to achieve 

improved overall model fit. Having determined the model, a diagnostic check is performed to verify its suitability (Figure 1).  

 

 
 

Figure 1: End-to-end ARIMA-based air travel forecasting architecture 

 

Residuals are tested to be close to white noise, and the Ljung-Box test is performed to determine whether residual 

autocorrelation is present. Comparative evaluation using the Akaike Information Criterion (AIC) or the Bayesian Information 

Criterion (BIC) helps determine the best-performing model from a set of rivals. Following validation, the model is used for 

forecasting future air travel behaviour. The forecasts are verified for plausibility and believability against performance 

measures, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE). 

Forecasts are plotted against history for plausibility and credibility. The last step is interpretation and reporting, where results 
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are placed in the context of the air transport business. Analysts explain how forecasts enable airports and airlines to plan 

operations, optimise capacity, and optimise customer service. Analysis proposes limitations of the model, e.g., vulnerability to 

unexpected events like pandemics and geopolitical tensions, and future research. An end-to-end pipeline, spanning from data 

ingestion to the forecast and interpretation phases, enables decision-makers to make informed decisions in a dynamic and 

uncertain transport environment. 

 

Figure 1 depicts a strong architecture that is well-equipped to utilise both statistical and machine learning models for real-time 

and precise forecasting. Essentially, the architecture starts with a Data Ingestion Layer that collects structured and unstructured 

aviation data from diverse sources, including flight logs, weather APIs, and IoT sensors on aircraft and airport operating 

systems. These are pushed to a Preprocessing Layer, which cleans, normalises, identifies anomalies, and synchronises by 

timestamp. Clean data is pushed to a Feature Engineering Module, from which aviation features such as flight delay patterns, 

seasonal traffic patterns, and aircraft maintenance cycles are extracted. A clean dataset is pushed to the Model Orchestration 

Layer, from which traditional time series models, such as ARIMA and Exponential Smoothing, are utilised, along with deep 

models like LSTM networks and Transformer-based architectures. These are orchestrated by a Meta-Learning Ensemble 

Engine that optimally combines the models and selects them based on recent performance. Forecast outputs—delay probability, 

fuel burn forecasting, and passengers' movement—are streamed to the Visualisation and Reporting Interface from which air 

traffic controllers and aviation analysts can query dynamic dashboards. A Feedback Loop captures system feedback and 

prediction error, allowing for an ongoing effort to relearn and retrain. The diagram also features deployment nodes, such as 

cloud infrastructure, aircraft edge devices, and airport control centres, which represent the scalability of the architecture. Figure 

1 overall captures the modularity, real-time feedback, and prediction accuracy of the architecture, which is the essence of 

current-day aviation analytics systems. 

 

4. Results 

 

From the result perspective section, ARIMA model estimation on past air travel data provided strong support for the model's 

forecasting and analytical capability. The paper has been initiated with the systematic gathering of air travel data, i.e., passenger 

traffic, frequency of flight, and load factor, which were cleaned and transformed as and when necessary to make it accurate and 

useful. First, it was observed that the time series is non-stationary, which was verified by the Augmented Dickey-Fuller (ADF) 

test. Additionally, it was indicated that differencing of the data is necessary to stabilise the mean. With the assistance of the 

time series diagnostic tools, i.e., the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots, the 

preliminary form of the model was derived. These plots were of immense use in diagnosing the lag structure and led to the 

selection of the ARIMA (1,1,1) model as the best fit. The same was then estimated and fitted using the Maximum Likelihood 

Estimation (MLE) method, a scientific optimization process that minimizes the forecast error and maximizes model precision. 

Among the various alternatives attempted, the ARIMA (1,1,1) model provided the best fit, as confirmed by the minimum values 

of the model selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

To verify the model adequacy, a cautious residual analysis was conducted, ensuring that the residuals approximated white 

noise, with no residual autocorrelation or pattern. The Ljung-Box test results have verified this. The ARIMA model will be: 

 

yt = μ + ∅lyt‐l+φ2y⊢2+τφpy⊢pτ0|εt‐l +θ2ε ⊢2+ +0qε + ε                                                                                   (1) 

 

Autocorrelation Function (ACF) is given below: 

 

ρk =
Cov(Yt,Yt−k)

√Var(Yt)Var(Y⊢k)
                                                                                                                                                                (2) 

Table 1: Actual vs. Forecasted values based on two predictive models 

 

Value Forecast_Values1 Forecast_Values2 

165 163.161121 163.161121 

171 167.885191 167.885191 

175 171.00558 171.00558 

177 173.05741 173.05741 

189 174.41306 174.41306 

193 175.308265 175.308265 

204 175.808457 175.808457 

208 176.287796 176.287796 

210 176.544037 176.544037 

215 176.714071 176.714071 

222 176.825843 176.825843 

222 176.825843 176.825843 
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226 176.948219 176.948219 

220 176.980577 176.980577 

222 176.0803 176.0803 

220 177.01474 177.01474 

 

Table 1 is a side-by-side tabulation of values recorded against the corresponding forecasted result of two forecasting models, 

Forecast_Values1 and Forecast_Values2. The table records index positions 85 to 99, which correspond to the maximum 

evaluation window for the performance of time series forecasting models. The column for values records ground truth, a 

description of readings, or actual readings in the data set, between 165 and 222. The two forecasting models attempt to predict 

the results, and the forecasts are provided with high decimal accuracy, reflecting the computational accuracy. Interestingly, 

Forecast_Values1 and Forecast_Values2 yield the same result in every row, indicating that the two models are set up identically 

or that Forecast_Values2 serves as a duplicate check of the first. The forecast values closely follow actual values, reflecting the 

goodness of the underlying model in capturing temporal trends. For instance, at index 91, the actual value is 204, and the two 

forecast models give 175.308457, a slight underestimation. The models show a consistent pattern of following rising slopes in 

the actual values, e.g., between indices 91 and 95, where actual values trend from 204 to 222, and the forecasts change. 

Additionally, the forecasts level off at values in the range of 177, while the actual values level off at 220–222, indicating that 

the models are capturing the saturation of the trend. Generally, Table 1 validates the accuracy of the forecasting process and 

provides insight into its predictive similarity to real-world data—a critical consideration in applications such as demand 

planning, capacity forecasting, or traffic analysis. Partial Autocorrelation Function (PACF) can be framed as: 

 

φkk =
Cov(Yt,Yt−k|Yt−1,…,Yt−k=1)

√Var(Yt)Var(Yt−k)
                                                                                                                                       (3) 

 

Augmented Dickey‐Fuller Test (ADF) is: 

 

Δyt =a+βt+γyt−1 ⊢ | + Σ δ;Δyt−1 + ε,                                                                                                                        (4) 

 

Maximum likelihood estimation is: 

 

L(θ) = ∏ fn
t=1 (γt; θ)                                                                                                                                                     (5) 

 

This confirmed that the model had actually imprinted the underlying pattern of the time series without overfitting, and the fitted 

model was then utilised to project for the next 12 months. The projection revealed a smooth upward trend with intermittent 

anticipated seasonal fluctuations, representing normal variations in travel demand due to the holiday season, tourist cycle, and 

business travel patterns. 

 

 
 

Figure 2: Autocorrelation analysis and differencing for stationarity 

 

Figure 2 illustrates the overall visualization of the time series differencing transformation and accompanying autocorrelation 

function (ACF) plots by level of transformation. The left column displays a line plot of the time series data for three levels: the 

original series, the first-order differenced series, and the second-order differenced series. The top-of-page original series 

exhibits a clear upward trend with periodic oscillations, typical of non-stationarity—the usual bane of time series forecasting 

models. Underneath this is the first-order differencing, which strips the trend component and leaves a series more stable in 
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terms of mean, but still perhaps heteroscedastic. The third, second-order differencing, further stabilizes the variance and brings 

the data to a more stationary form, better suited for ARIMA-type modeling. The right column in Figure 2 contains ACF plots 

for each level of transformation. The original series ACF demonstrates slow, exponential decay, typical of strong 

autocorrelation and non-stationarity. The ACF of the first-order differenced series, however, demonstrates a faster-decaying 

pattern, typical of a partial gain in stationarity. The ACF of the second-order differenced series demonstrates only short-term 

autocorrelation spikes and near-zero values beyond early lags, typical of a stationary process. Collectively, these panels 

demonstrate the use of differencing in achieving stationarity, a prerequisite for many forecasting algorithms. Figure 2 provides 

a clear visual illustration of how each transformation progressively strips away trend and autocorrelation, highlighting the 

minimum order of differencing necessary to model the series satisfactorily. 

 

The projection was also graphically illustrated against historical data, demonstrating high continuity and realism in the projected 

value. In addition, the analysis not only demonstrated the ARIMA model's ability to capture seasonality and trend in air travel 

data but also proved its usefulness in real-world aviation forecasting. The implication of the result was of far-reaching 

importance, including the apparently cyclical nature of travel, an accelerating growth pattern, and recurring seasonal peaks, all 

of which are of crucial interest to strategic airline and airport planning. For example, systematic growth in predicted travel 

demand necessitates pre-planning, including the deployment of resources such as fleets, crew scheduling, and infrastructure 

preparation. In addition, the discovery calls for the use of a dynamic pricing mechanism, whereby airlines dynamically adjust 

fares in real-time based on anticipated demand to optimize revenue and customer satisfaction. Promotional campaigns could 

also be optimised by adjusting promotional efforts to coincide with the anticipated peak in seasonal demand. 

 

 
 

Figure 3: Graphical comparison of two groups of distribution of predicted values 

 

Figure 3 is a graph plot of the distribution of the two sets of forecast values: Forecast_Values1 (orange) and Forecast_Values2 

(blue). Two of the series have been graphed over a common range of forecast values, approximately 163 to 177. From the 

histogram, the two sets of forecasts are clustered together at the high end of the range, at 176, with a few points of values 

spilling over to lower ranges of 164 and 170. Forecast_Values2 exhibits a clumpier clustered distribution around the 176 point, 

with high-frequency values in this area, indicating a higher degree of consistency in this set of forecasts. Forecast_Values1 is 

more diffuse, with a less intense distribution. The orange bars represent the lower frequencies of values, with slight fluctuations 

across the range of forecasts; however, these fluctuations are much less intense than those in Forecast_Values2. From the 

histogram map, we can observe that Forecast_Values2 is more stable, with fewer fluctuations, while Forecast_Values1 has a 

wider range of forecasts. This graph plot allows us to understand the spread and variation of the forecast data, providing insight 

into which model can offer greater stability or variation, depending on the application of the forecasts.  

 

It can be observed that Forecast_Values2 exhibits a consistent trend in its forecasts, whereas Forecast_Values1 shows somewhat 

more fluctuation in its forecasts. Although its performance is stunning, the study also revealed its limitations. The consistency 

of ARIMA performance in stable conditions can be compromised by unexpected external shocks, such as economic downturns, 

geopolitical conflicts, or pandemics, which introduce uncertainty into the data that the model was not designed to handle. These 

externalities are not controlled in ARIMA, whose assumption is that past patterns continue to prevail in the future. Hence, while 

the model holds in short- to medium-term projections, accuracy will break down in highly uncertain or rapidly changing 

environments. Hence, more studies involving additional explanatory variables and external controls, such as macroeconomic 

variables, exchange rates, and oil prices, are recommended to enhance the model's responsiveness. Moreover, coupling ARIMA 

with machine learning algorithms such as hybrid ensemble models or neural networks can make the predictions more responsive 

and robust. Including international routes, low-cost carriers, and other segments in the dataset would also add more travel 
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dynamics. In short, the study reaffirms the ARIMA model as a valuable tool for measuring air travel demand, making it useful 

in data-driven decision-making in aviation, and also as the foundation for more responsive and integrated forecasting models 

in future studies. 

 

 
 

Figure 4: Actual vs. Forecast results of air trend 

 

Figure 4 is a comparison plot between a time series, providing a good idea of the model's performance in forecasting along a 

single line of observations. The x-axis represents the time index (0 to 100), and the y-axis represents the observed variable 

values, ranging from approximately 75 to 275. The plot consists of three distinct regions: training data, actual data, and forecast 

values. The blue line on the left is the training set, i.e., the observed history on which the model is trained to learn the temporal 

patterns. The training line of wavy movements exhibits several peaks and troughs, representing theoretical changes in the 

observed measure over time. To its right, the orange line begins where the training set ends, which is the observed actual values 

in the forecast window. These values exhibit a sharp rising trend, which is evident in the sudden spike in the variable in question. 

The green line, however, represents the model-simulated forecast values. Note how the forecast plots a relatively conservative 

and flat line compared to the actuals, i.e., that perhaps the model has underfit the recent spike. Around the forecast is a shaded 

grey cone, which is the prediction interval or confidence band. The cone becomes broader as uncertainty accumulates as the 

model forecasts further into the future. Overall, Figure 4 gives some interesting insights into model strengths and weaknesses, 

i.e., its ability to learn long-run trends while perhaps being unable to learn sudden short-run spikes. The visualisation provides 

insight into the value of adaptive modelling techniques in time-critical applications. 

 

5. Discussion  

 

The analysis in this research combines the capabilities of ARIMA-based model projections with historical air travel data. It 

examines the strengths and weaknesses of the model in capturing underlying trends and seasonality. According to the results, 

as shown in Table 1, there is a consistent increase in air travel demand projections. Forecast_Values1 and Forecast_Values2 

exhibit similar trends, albeit with variations in their estimates. Such variations indicate that ARIMA-based models can 

accurately project overall trends, but with some degree of inaccuracy in forecasting individual values, particularly in the 

presence of external events or sudden incidents. As shown in Figure 3, the mixed histogram for Forecast_Values1 and 

Forecast_Values2 illustrates the frequency distribution of forecast values. From the histograms, Forecast_Values2 exhibits a 

tight spread, indicating relative consistency, whereas Forecast_Values1 displays a wide spread, indicating increased variability 

in its estimates. Such variability is a sign of the model's sensitivity to individual historical observations and natural variations 

in air travel demand, resulting from seasonality and sudden events such as economic instability or political tensions. The two 

series of forecasted values from the ARIMA model are graphed against historical data, and the values appear to have good 

agreement with the observed values, especially during normal travel periods. However, the observations from Figure 4, the 

time series plot, reveal high incidences of underfitting in the model forecast, as the actual data suddenly experienced a sharp 

upward surge. The forecast, as revealed by the green line, shows a relatively flat trend compared to the sharp upward surge of 

actual values (orange line). This poor fit suggests that ARIMA, which is effective in capturing long-term trends, may not be as 

effective in keeping pace with sudden short-term trends in the data, such as those caused by large, unforeseen events or market 

shocks.  

 

The widening grey cone around the forecast line also indicates this uncertainty, with the widening confidence band and 

expanding forecast horizon, as a measure of the model's inefficiency in capturing movement after a point. These results align 

with earlier findings that demonstrate the challenge of using traditional statistical techniques, such as ARIMA, in capturing 
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rapidly changing trends. Figure 2, which displays the exercise of differencing to attain stationarity, illustrates how transforming 

non-stationary data into stationary data enhances the forecastability of the model. With first-order and second-order 

differencing, we were able to stabilise the variance and remove trends, such that the ARIMA model could effectively model 

the time series data. The ACF plots in Figure 2 affirm this, with considerably lower levels of autocorrelation following 

differencing, as a prerequisite for the validity of the ARIMA model. The analysis of residuals also demonstrated that the model 

was effective in capturing the dynamics of the data, as the residuals simulated white noise, with no significant autocorrelation 

being observed. However, despite the ARIMA model's success in capturing overall trends and seasonality, its inefficiencies 

were evident when faced with sudden spikes in the data, such as the notable spike observed in the later part of the time series. 

 

This underfitting suggests that the model is theoretically improvable with additional tuning, possibly by incorporating 

extraneous factors such as economic conditions, weather, or market shocks that have direct impacts on air travel demand. 

Aggregate results suggest the application of more dynamic or mixed models, which can respond quickly to changing data 

patterns without compromising the ability to detect longer-term trends and seasonal patterns. Future research should consider 

the application of machine learning techniques, such as neural networks or Support Vector Machines (SVMs), to accommodate 

flexibility in nonlinear relationships and dynamic changes in data, thereby improving the accuracy of forecasts in more dynamic 

environments. The additional inclusion of data coverage for international flights, low-cost carriers, and other segments may 

represent a more realistic measure of air travel demand and more accurate forecasts. In the long term, however, even though 

ARIMA-based models remain useful tools for forecasting in air travel, they will need to be supplemented with adaptive methods 

and additional variables to offer robustness in the face of unexpected market dynamics. 

 

6. Conclusion 

 

ARIMA methods have been effective in analysing air transport data and are of paramount significance in providing reliable 

forecast predictions for air transport. Given that the model can identify air transport's short-term movements and long-term 

trends, ARIMA enables companies to maximize operational effectiveness and resource utilization. The credibility and 

reliability of model predictions are of paramount significance in decision-making, as visualisations and analysis authenticate 

the model's predictability. The models enable airports and airlines to make decisions, from rescheduling flights to capacity 

planning, in a way that maximises resources. For instance, the ARIMA model can predict passenger demand, allowing airlines 

to re-book accordingly for off-peak and peak seasons and optimise the number of staff so that work is maximised. The use of 

the model is also critical in infrastructure planning, as airports make provisions for additional passengers by predicting demand 

for terminal expansion, extra gates, or improved facilities. Thus, the analysis did show some potential for improvement in the 

performance of the model, i.e., the model underestimating demand at certain times. This would mean that ARIMA, as a strong 

model, cannot capture the dynamics of sudden change in air travel behaviour, e.g., due to economic or geopolitical crises or 

global events like pandemics. To make this feasible, the use of exogenous variables, e.g., economic or geopolitical data, can 

improve the accuracy of the forecast and enable the model to react positively to sudden changes in air travel behaviour. Future 

research can also explore the use of advanced time series models and machine learning algorithms, which can enhance ARIMA's 

ability to detect non-linear patterns and respond to sudden changes, thereby making even more accurate and dynamic 

predictions in the aviation industry. 

 

6.1. Constraints 

 

The ARIMA model, strong as it is for time series forecasting, does have some built-in constraints. One of the largest constraints 

is the over-reliance on the stationarity assumption, which requires the time series data to be trend-free and have constant 

variance. Stationarity is typically achieved through differencing, which, although helpful, can sometimes distort the data or 

miss sudden changes or non-linear trends in the series. ARIMA models are also linear and may overlook intricate relationships 

between the data, such as geopolitical events, sudden economic downturns, or other shocks. The model does not function in the 

case of sudden shifts in demand because it is not adaptable to new, unexpected trends. The performance of ARIMA is also 

heavily reliant on the quality and availability of past data, and missing data or outlier data have a humongous effect on predictive 

accuracy. All these drawbacks make caution advisable when applying ARIMA in real-life scenarios, where external events and 

unexpected swings can have a significant impact on trends. 

 

6.2. Future Scope 

 

To address the limitations of the ARIMA model, future research can explore combining ARIMA with advanced machine 

learning algorithms, such as neural networks, Support Vector Machines (SVMs), or ensemble methods, which possess the 

ability to identify non-linear patterns and adapt to sudden changes in data. By combining the ability of ARIMA to identify 

trends and the versatility of machine learning to identify advanced patterns, hybrid models can provide superior predictions. In 

addition, incorporating external factors such as macroeconomic factors, weather, and real-time data would make it an even 

more superior framework for predicting demand under uncertain conditions. Another alternative is to enhance the dataset with 
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higher-order data, such as international sectors or new markets, thereby making the model more generalizable and improving 

its accuracy. Incorporating dynamic price models and customer behaviour models can also improve prediction ability, with an 

advanced process to predict air travel. 
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